暑期即將到來,暑假是考研考生們集中復習備考的一個黃金時間,這個時間段是你的成績突飛猛進的時候,作為考研課程中的公共課程,數學在其中起著至關重要的作用。下面小編給大家整理了考研數學一的五大考點,大家重點復習:
一、極限
首先是極限。極限在數一中還是占著很大的比重,考試的只要考查方式就是求極限,還有就是一些單調有界定理的使用。我們要充分掌握求不定式極限的種種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內容;其次就是極限的應用,主要表現為連續,導數等等,對函數的連續性和可導性的探討也是考試的重點,這要求我們直接從定義切入,充分理解函數連續的定義和掌握判定連續性的方法。
二、導數和微分
雖然導數是由極限定義的,然而真正在考試的過程中,我們求一個函數的導數時,我們并不會直接用定義去求,更多的是直接從求導公式中去求一個函數的導數。導數的考查方式主要還是和其它的知識點相結合,很少直接給你一個函數讓你求導數。例如不等式的證明,函數單調性,凹凸性的判斷,二元函數的偏微分等等。換句話說,導數是一個基礎。
三、中值定理
中值定理一般會兩年至少考一次,多是以證明題的方式出現,而且常常和閉區間上的連續函數的性子相結合,以與羅爾定理為重點。
四、積分與不定積分
積分與不定積分是考試的重中之重,尤其是多元函數積分學更是每年的必考題型,平均一年會出兩道大題,而且定積分、分段函數的積分、帶絕對值的函數的積分等種種積分的求法都是重要的題型。而且求積分的過程中,特別要留意積分的對稱性,利用分段積分去掉絕對值把積分求出來。二重積分的計算,固然數學一里面還包括了三重積分,這里面每年都要考一個題目。另外曲線和曲面積分,這也是必考的重點內容。對于曲線積分和曲面積分,考查方式以格林公式和高斯公式的應用為主,大家一定要注意格林公式和高斯公式的使用條件,考試的過程中往往會在這里設置陷阱。這兩部分內容相對比較零散,也是難點,需要記憶的公式、定理比較多。
五、微分方程
微分方程中需要熟練掌握變量可分散的方程、齊次微分方程和一階線性微分方程的求解方法,以及二階常系數線性微分方程的求解,對于這些方程要能夠判斷方程類型,利用對應的求解方法,求解公式,能很快的求解。對于無限級數,要會判斷級數的斂散性,重點掌握冪級數的收斂半徑與收斂域的求解,以及求數項級數的和與冪級數的和函數等。
以上就是“2020考研數學一暑期復習備考四大考點”的全部內容,更多相關信息,請持續關注研線網!